Game Theory Intro

Game Theory Course:
Jackson, Leyton-Brown \& Shoham

More General Form

Prisoner's dilemma is any game

	C	D
C	a, a	b, c
	c, b	d, d

with $c>a>d>b$.

Games of Pure Competition

Players have exactly opposed interests

- There must be precisely two players (otherwise they can't have exactly opposed interests)
- For all action profiles $a \in A, u_{1}(a)+u_{2}(a)=c$ for some constant c
- Special case: zero sum
- Thus, we only need to store a utility function for one player
- in a sense, we only have to think about one player's interests

Matching Pennies

One player wants to match; the other wants to mismatch.

	Heads	Tails
Heads	$1,-1$	$-1,1$
Tails	$-1,1$	$1,-1$

Rock-Paper-Scissors

Generalized matching pennies.

	Rock	Paper	Scissors
Rock	0,0	$-1,1$	$1,-1$
Paper	$1,-1$	0,0	$-1,1$
Scissors	$-1,1$	$1,-1$	0,0

...Believe it or not, there's an annual international competition!

Games of Cooperation

Players have exactly the same interests.

- no conflict: all players want the same things
- $\forall a \in A, \forall i, j, u_{i}(a)=u_{j}(a)$
- we often write such games with a single payoff per cell
- why are such games "noncooperative"?

Coordination Game

Which side of the road should you drive on?

	Left	Right
Left	1,1	0,0
Right	0,0	1,1

General Games: Battle of the Sexes

The most interesting games combine elements of cooperation and competition.

	B	F
B	2,1	0,0
	0,0	1,2

